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Allylic alcohols are integral subunits of a variety of biologically =~ Table 1. Examination of Ligand Structure?
interesting natural products as well as key building blocks for a EtsSiH (2.0 equiv) OSiEt,
number of important synthetic transformations. Among the numer- - 3
ous strategies for the preparation of allylic alcohols, the reductive H Me/ " '((oc_){ ';%T,’iVN;(fC%D )2 Ph/fph
coupling of aldehydes and alkynes in either an inter- or intramo- (‘-0 equiv) (1.2 equiv) THF, 25°C 2a
lecular sense arguably provides the most direct access to this Ph ~ Ph
important substructure from simple precursbt$Vhereas several 1 _Ar’N /N\Ar -
asymmetric approaches to the reductive coupling of aldehydes and 4
alkynes have been reportédur recent studies involving the use FPr P
of achiral N-heterocyclic carbene complexes of nickel illustrated @ Q_Q §~©
several important features including broad scope with both internal H
and terminal alkynes, direct incorporation of a silyl protecting group,
and the ability to tune alkyne regioselection in macrocyclizations 1a,50% (27%ee) 1D, 50% (29% ee)  1c, 40% (45% ee)
based on ligand sterié¢sin order to capitalize upon these advan- Cy, Me, Oy
tages, we have now examined the asymmetric coupling of aldehydes E‘Q 5‘@ E@—Cy
and alkynes using chiral N-heterocyclic carbene complexes. e

H Me

Pioneering studies from Grubbs illustrated that N-heterocyclic
carbenes derived fror®, symmetric diamines and moratho-
substituted aryl halides were excellent participants in asymmetric
ring-closing metathesis reactionsembers of this structural class of the imidazolium salt, % yield for the production Busing the ligand,
of N-heterocyclic carbenes appeared to be promising candidates, 4 ihe v ee (in parentheyS|s) of Comp%mmroduced Wn% the ||ggand
for asymmetric nickel-catalyzed reductive couplings. We thus bThis entry employed 2 mol % dff, KO-t-Bu, and Ni(COD).
examined the reductive coupling of benzaldehyde and 1-phenyl-
propyne under a variety of conditions to provide a lead ligand
structure for further optimization. The known N-heterocyclic
carbene ligands, generated in situ frdm and 1b in THF with
KO-t-Bu, allowed the production of the desired protected allylic
alcohol2a in modest yield and poor enantioselectivity (Table 1). Upon identifying the excellent catalytic activity and promising
New ligandslcand1d, which incorporate aortho-phenyl orortho- enantioselectivity in a reaction with the catalyst derived from ligand
cyclohexyl substituent, were then prepared from the commercially 1f, we sought to explore its generality across a range of substrates.
available aryl bromides. A reaction involving ligardd afforded As illustrated (Table 2), the yields and enantioselectivities are
product2a with slightly improved enantioselectivity, whereas a relatively uniform across a broad range of substrates. Key functional
reaction with ligand1ld proceeded with significantly improved  groups cleanly tolerated in the procedure include aromatic as well
enantioselectivity, affording compour2ain 76% ee in 60% yield. as branched and unbranched aldehydes, internal alkynes that either
Despite the encouraging enantioselectivity with ligdddexamina- possess or lack an aromatic substituent, terminal alkynes, and
tion of additional starting material combinations illustrated that unprotected alcohols, wherein the trialkylsilyl group is regioselec-
yields were often poor to modest. Given the requirement of steric tively installed on the newly formed hydroxyl. Regioselection of
hindrance to stabilize free N-heterocyclic carbenes (by preventing alkyne insertion is high with the exception of internal alkynes that

1d, 60% (72% ee)  1e, 79% (30% ee)  1f, 98% (78% ee)®

aBelow each structure in the table is the given the compound number

heterocyclic carbene ligands in catalytic aldehyde/alkyne reductive
couplings. We therefore anticipate that this new ligand may be
useful in various metal-catalyze®lor organocatalytit processes
that rely on N-heterocyclic carbene species.

dimerization), we next consideredtho,ortho-disubstituted carbene
ligands. Ligandle was thus prepared, which did indeed allow
improved chemical yields but with low enantioselectivities. Rec-
ognizing that ortho,ortho-disubstitution was optimal from the
standpoint of chemical yield, whereas steric differentiation of the
two ortho substituents was optimal from the standpoint of enanti-
oselectivity, we next prepared ligadél Under the same conditions

described for the above experiments, chemical yields in couplings

of benzaldehyde and 1-phenylpropyne improved to 98% with lower
catalyst loading (2 mol %) in 78% ee. Whereas ligatfdwas
primarily designed for enantioselectivity optimization, the catalytic
activity of the nickel catalyst derived from this ligand surprisingly
exceeded that of the commonly employed IMes and IPr N-
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possess two aliphatic substituents (entries 4 and 11). Notably, the
regioselectivity in one of these cases was found to undergo reversal
with ligand 1d (compare entries 11 and 12). Therefore, ligdad

may be useful in some applications due to this complementary
regioselection. The reversal of regioselectivity is consistent with
the steric-based model for regioselectivity reversal proposed in
macrocyclizations involving achiral ligands.

Given that macrocyclizations of ynal substrates provide an
important entry to substructures found in many bioactive natural
products, this new procedure was applied in an asymmetric
macrocyclization of ynaB (eq 1). In this example, 14-membered
macrocycle4a and 13-membered macrocycld were produced
in 76% combined yield as an 86:14 mixture of regioisomers (79%

10.1021/ja072992f CCC: $37.00 © 2007 American Chemical Society
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Table 2. Scope of Asymmetric Couplings

0 R3 Et3SiH (2.0 equiv) OSiEt,
+ = - - F
R‘JJ\H nz/ 1f, KO-+Bu, Ni(COD), RN RS
(1.0 equiv) (1.2 equiv) (0‘;:3,‘"2"5?0“) , K
entry R! R? R? % yield (% ee)?  regioselectivity
1 Ph Me Ph 98 (78) 10:1
2 Ph Et Et 82 (70)
3 i-Pr Me Ph 86 (70) >19:1
4  i-Pr (CHy)sPh Me 86 (75) 31
5 Cy Et Et 84 (85)
6 (CHy)Ph Et Et 75 (78)
7 Cy Me Ph 78 (81) >19:1
8 Cy H n-hex 64 (65) >19:1
9  n-hex Me Ph 70 (73) 10:1
10 Cy (CH)sOH  Ph 99 (79) 9:1
11 Cy n-pent Me 79 (76) 34
12 Cy Me n-pent 47 (719 6:1

aThe % ee is given for the major regioisomeéme used 2 mol % of
1f, Ni(COD),, and KO#-Bu. ¢ Ligand S,9-1f was used, and the enantiomer
of the configuration shown for produ&was obtained? Ligand 1d was
used.® Minor regioisomer of entry 11 is of th®configuration produced in
76% ee.

Scheme 1. Model for Enantioselection
Ph,‘ Ph side Bh
Cy /_< Cy:‘ view Yl—by
/oSNNS Me'/ R3
Cy—>~=", Y.R3 Z=Cy Ni
Me OINI"HMe C\>}/ /
5 R1J\H A HR1 R?
Ph, l Ph
Sy —( ©v, OSiEt,
NN N == - . H
oy //;.: Y N\ cy R«V\RS
Me Ni. Me R2
>r/</ observed
6 U absolute stereochemistry

ee for @-4a and 42% ee for9-4b). Notably, the regioselection

is reversed in comparison to intermolecular examples (Table 2,
entries 4 and 11), illustrating that ring size is a factor in determining
regioselectivity.

N
S CH, Ni(COD),, Et,SiH

1f, KO-#-Bu

(1)
HaG
/
OSiEt,
)

4b (42% ee)

(0]

3 H
:CH

4a (79% ee)

3 +

OSiEt,

86:14
(76% yield

In analogy to the proposal from Grubbs in asymmetric ring-
closing metathesis reactions involving members of the ligand class

1,5 we propose that the reaction proceeds via generation of a three-

coordinate comple® (Scheme 1§.Tilting of the N-aryl ring of 5
relative to the imidazolidine ring would position thertho-

cyclohexyl substituerdnti to the backbone phenyl group and distal
to nickel as depicted. This orientation would then positiorottieo-
methyl substituensynto the backbone phenyl group and proximal
to nickel. It is theortho-methyl substituent that thus dictates the
selectivity of aldehyde binding according to this model. Oxidative
cyclization of structuré to metallacycles would then lead to the
formation of2, which is the major enantiomer obsened.

In summary, an efficient approach to synthesis of allylic alcohols
involving the catalytic asymmetric coupling of aldehydes and
alkynes has been developed. A new chiral N-heterocyclic carbene
ligand was prepared that provides improved reaction efficiencies
and enantioselectivities compared with known, structurally related
N-heterocyclic carbene ligands. Although prior studies established
good to excellent enantioselectivities with specific substrate com-
binations? the simple experimental protocol (fast reactions at rt
with a stable reducing agent) provides significant preparative
advantages of this new procedure, and the range of participating
substrates is the broadest of any single method to date. The
development of new generations of ligands, synthetic applications,
and mechanistic studies are in progress.
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